Multipoint Temperature Measurement Solutions for Oil, Gas, Chemical, and Petrochemical Industry Applications
Accurate, reliable and repeatable temperature measurements are essential to process operations. Plant personnel rely on temperature measurements for safety and process efficiency. Single point temperature measurements are utilized to monitor and protect critical assets. Multiple point measurements are essential to maintain reactor vessel internals and catalysts.

To ensure the safety of your operators and efficiency of your process, it’s crucial to choose the best temperature instruments for your specific application. Ashcroft offers a variety of multipoint temperature measuring instruments for processing facilities, power plants and chemical reactors throughout the world.

Let us help keep your critical equipment and process running with reliable pressure and temperature measurements.

Contact us to help you with your next project:

1.800.328.8258

ashcroft.com
Introduction

Multipoints are multiple temperature sensing points housed within a protective sheath. They are available in large diameter and compact designs, and are custom designed with plant instrument, process, maintenance and reliability teams to meet each vessel's specific requirements.

This guide will provide information about the applications in which multipoints are used, and how to select the right multipoint temperature measurement solution for your application.

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER 1: Advantages for Applications</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 2: Multipoint Options & Features</td>
<td>6</td>
</tr>
<tr>
<td>CHAPTER 3: Related Temperature Products</td>
<td>14</td>
</tr>
</tbody>
</table>
CHAPTER 1: Advantages for Applications

Multipoint temperature sensors are vital for measuring the different levels of temperature in a tank or reactor vessel. They offer many benefits for your process.

CATALYST PERFORMANCE

Within this critical process, which includes hydrocracking and hydrotreating in fixed bed reactors and catalyst reformer reactors, multipoints play a critical role in the success of licensed technology including catalyst performance.

A detailed and extensive examination of the catalyst performance allows refineries and chemical plants to make critical decisions when determining catalyst changes and upgrades. Performance records provided by instrumentation, including temperature, allows plant management to make upgrades recommendations.

Process Licensors specify their technology and catalyst performance based on temperature differentials. Plants in turn must confirm catalyst has been loaded into the reactor correctly in order to provide the correct distribution in fixed bed reactors. To perform as specified, catalyst must be loaded and distributed correctly in fixed bed reactors. Good delta temperatures are an indicator of proper catalyst distribution.
UNIQUE ASSEMBLY DESIGNS

Temperature is the most widely measured process variable in industrial plants. The unique assembly designs of multipoint sensors provide a high number of data points to the plant’s control systems from one single nozzle entry point.

Sensing points within a multipoint sheath can be positioned at varying levels within the protective sheath by process personnel to gain valuable insight into the vessel's process performance. Once this information is transferred from the multipoint into the control system, plant personnel can analyze the temperature gradient profile.

LARGE NUMBER OF DATA POINTS

Refining, petrochemical, chemical and process storage utilize the largest number of temperature data points. Within refining, petrochemical and chemical plants, multipoints support each unit’s specific needs. Plant personnel use this important information to diagnose unfavorable conditions, and to identify and develop optimization opportunities.

Hydroprocessing is one example of many applications that use multipoints to keep reactors safe from temperature excursions, which could damage the catalyst and reactor, and ensure quality product yields that meet specifications.
CHAPTER 2: Multipoint Options and Features

Today, it has become essential to specify an appropriate temperature measurement system design in oil, gas, chemical and petrochemical applications. For optimized process operation, the temperature needs to be precisely controlled.

To obtain maximum product yield and quality while preserving the environment, Ashcroft has developed several technical solutions for multipoint temperature measurement in reactors, which ensure a uniform temperature profile through the reactor catalyst trays, offering safe designs suitable for each application.

Multipoint solutions that fulfill the requirements of the applications:

- **Straight multipoint for reactors** with spring-loaded thermal blocks or welded heat transfer blocks
- **Multi-thermowell flanged assemblies** with guide tube and compression devices
- **Flexible multipoint for reactors** with mineral insulation cables with standard, reinforced or double wall
- **MultiOne thermocouples for reactors** offer multiple sensing points along the length of MI-cable at various predetermined locations inside the catalyst bed
- **Multipoint accessories for reactors**, such as metal brackets, wall-mounting devices and soldering clip sources of thermal dissipation
STRAIGHT MULTIPOINT FOR REACTORS
These are designed to be inside a thermowell. To reduce the response time, the measuring points must be in contact with the thermowell wall. Ashcroft offers several designs with spring-loaded blocks, with guide tubes for individual removal and replacement of sensors during operation, with guide discs or with blind tubes.

Numerous options are available:
- Different metallic alloys to suit the process conditions
- Rigid execution with compression devices
- Intrinsically safe transmitters with 4-20 mA HART/Profibus/Fieldbus Foundation, among others

MULTI-THERMOWELL FLANGED ASSEMBLIES
Flanged assemblies of multiple thermowells allow measurement from temperature points along its length. Flexible multipoints allow you to locate measurement points where you need them.

The metallic support is designed to distribute the measurement points so as not to create sources of thermal dissipation.
FLEXIBLE MULTIPOINT FOR REACTORS

The number of thermocouple points is determined by the nozzle size and thermocouple diameter. The flexible multipoint also features cables insulated with magnesium oxide of various diameters (3, 6, 8 mm, etc.), a double-sealed safety chamber and direct or remote mount connection head. Optional 4-20 mA HART/Profibus/Fieldbus Foundation transmitters are available.

Flexible multipoints are designed to be in direct contact with the process fluid without the use of thermowells and withstand the high pressures and temperatures of the reactor. The thermocouple rod can be routed down the wall to the lower catalyst bed.

The thermocouple must be at least 75 mm from the support frame. The intention is to measure the catalyst temperature, not the support temperature.

Its functions include:

- Temperature reading at multiple points
- Indicate temperature variations
- Estimate the useful life of the catalyst
CONVENTIONAL MULTIPOINT THERMOCOUPLE WITHOUT SECURITY CHAMBER

MAGNESIUM OXIDE INSULATED CABLES, single wall, reinforced or double in various metal alloys to suit process reactor specifications

EXPLOSION PROOF HEAD WITH CABLE GLAND

COMPRESSION DEVICES to seal the top of the security chamber

CONVENTIONAL MULTIPOINT THERMOCOUPLE WITHOUT SECURITY CHAMBER
MULTIONE THERMOCOUPLE FOR REACTORS

- Offers multiple sensing points along the length of MI-cable at various predetermined locations inside the catalyst bed.
- These sensing points can be placed practically anywhere inside the reactor.
- At every location of hot junction, we will provide a weld deposit for visual permanent identification on every measuring point.

FLEXIBLE MULTIPOINT MINERAL INSULATED CABLES

Each sensor consists of a mineral cable that can measure temperature at various points on the catalyst tray.

Various sizes of MI cable available:

- Ø ¼” (6 mm or 6.35 mm) – greater number of thermocouples through a single flange
- Ø 5⁄16” (8 mm) – industry standard for multipoint reactor
- Ø 3⁄8” (9.5 mm) and ½” inches (12.7 mm) – for increased durability in severe applications

MULTIONE THERMOCOUPLE

Formed by mounting several individual thermocouples along the length of the same mineral insulated cable.
MULTIPOINT ACCESSORIES

Accessories include:

- Base support to be placed on the inner wall of the reactor
- Wall brackets and welding clips
- Reduced thermal dissipation effect
- Materials such as 347 stainless steel, 321 stainless steel, and more, according to specification
CHAPTER 2: Multipoint Options and Features

MULTIPOINT CERTIFICATIONS

Ashcroft offers the following hazardous location approvals and safety certifications that are required for your application:

• FM Intrinsically Safe, Non-Incendive and Explosion Proof for United States and Canada
• ATEX Ex i, Ex e, Ex d
• IECEx Ex i, Ex d
• INMETRO Ex i, Ex e, Ex d
• SIL2
• ISO 9001-2015
• EAC Customs Union

Other Certificates Available:

• Inspection under EN10204/3.1
• Conformity with EN10204/2.1
• Test Report EN10204/2.2
• Test and inspection report (RIT)
MULTIPOINT SUPERVISION AND COMMISSIONING

Upon request, we offer installation supervision services on your equipment.
CHAPTER 3: Related Temperature Products

In addition to multipoint temperature sensors, Ashcroft provides a full line of accurate, reliable and repeatable temperature products. Full product details, including specifications, data sheets, instruction manuals, drawings and product/technical information are available on ashcroft.com. You can also view helpful information and resources in our Resource Center or talk to an expert to answer your questions or plan your next project.

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Bi-metal Thermometers</th>
<th>Gas Actuated Thermometers</th>
<th>RTD Probes</th>
<th>Thermocouple Probes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Model E</td>
<td>Duratemp® / S5500</td>
<td>S10, S50</td>
<td>$10, $50, $70</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±1.0% of span</td>
<td>±0.5% of span</td>
<td>Class A</td>
<td>Class 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±1.0% of span</td>
<td>Class B</td>
<td>Class 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±1.6% of span</td>
<td>Class 3</td>
<td>Class 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Standard</td>
<td>Special</td>
</tr>
<tr>
<td>Size & Case Features</td>
<td>2”, 3”, 5” Stainless Steel, Hermetically Sealed</td>
<td>4½”, 100 mm, 160 mm, Stainless Steel</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Stem Lengths</td>
<td>2½” to 60”</td>
<td>Direct 6” to 36”, Remote 5” to 80”</td>
<td>2” to 120”, 50 mm to 3 m</td>
<td>2” to 120”, 50 mm to 3 m</td>
</tr>
<tr>
<td>Ranges</td>
<td>Temperature</td>
<td></td>
<td>Pt 100 -200 °C to 600 °C</td>
<td>Type J</td>
</tr>
<tr>
<td></td>
<td>-80 °F to 1000 °F (-50 °C to 550 °C)</td>
<td>-320 °F to 1500 °F, (-200 °C to 800 °C)</td>
<td>Pt 1000 -40 °C to 600 °C</td>
<td>Type E</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Type K</td>
<td>Type K</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Type N</td>
<td>Type N</td>
</tr>
</tbody>
</table>

-40 °C to 750 °C
-200 °C to 800°C
-200 °C to 1100°C
-200 °C to 1100 °C

See datasheets at ashcroft.com for complete product specifications.
Temperature Switches

<table>
<thead>
<tr>
<th>Specifications</th>
<th>B-Series Temperature Switch</th>
<th>B-Series Temperature Switch</th>
<th>L & G-Series Temperature Switch</th>
<th>P-Series Differential Temperature Switch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>T4</td>
<td>T7</td>
<td>LT & GT</td>
<td>PT</td>
</tr>
<tr>
<td>Enclosure</td>
<td>Watertight epoxy coated</td>
<td>Watertight epoxy coated</td>
<td>NEMA 4X/IP66</td>
<td>NEMA 7 & 9/IP66</td>
</tr>
<tr>
<td>Overall Length</td>
<td>Min U dimension 2"</td>
<td>Min U dimension 1"</td>
<td>Min U dimension 1"</td>
<td>Min U dimension 2"</td>
</tr>
<tr>
<td>Materials</td>
<td>Variety of metallic materials</td>
<td>Variety of metallic materials</td>
<td>Variety of metallic materials</td>
<td>304 & 316 Stainless Steel</td>
</tr>
<tr>
<td>Function</td>
<td>Single setpoint, fixed</td>
<td>Single setpoint, fixed</td>
<td>Dual independent setpoints, fixed</td>
<td>Dual independent setpoints, fixed</td>
</tr>
<tr>
<td>Overall Length</td>
<td>Min U dimension 2"</td>
<td>Min U dimension 1"</td>
<td>Single setpoint, adjustable deadband</td>
<td>Single setpoint, adjustable deadband</td>
</tr>
<tr>
<td>Materials</td>
<td>Variety of metallic materials</td>
<td>Variety of metallic materials</td>
<td>Single setpoint, fixed deadband</td>
<td>Single setpoint, fixed deadband</td>
</tr>
<tr>
<td>Function</td>
<td>Single setpoint, fixed</td>
<td>Single setpoint, fixed</td>
<td>Dual independent setpoints, fixed</td>
<td>Dual independent setpoints, fixed</td>
</tr>
<tr>
<td>Overall Length</td>
<td>Min U dimension 2"</td>
<td>Min U dimension 1"</td>
<td>Single setpoint, adjustable deadband</td>
<td>Single setpoint, adjustable deadband</td>
</tr>
<tr>
<td>Materials</td>
<td>Variety of metallic materials</td>
<td>Variety of metallic materials</td>
<td>Single setpoint, fixed deadband</td>
<td>Single setpoint, fixed deadband</td>
</tr>
</tbody>
</table>

Thermowells

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Thermowell</th>
<th>Thermowell</th>
<th>Thermowell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Flanged</td>
<td>Threaded</td>
<td>Sanitary</td>
</tr>
<tr>
<td>Process Connection</td>
<td>1", 1.5", 2", 3", & 4" Pipe Size</td>
<td>½", ⅜, ⅝, 1 NPT</td>
<td>1", 1.5", & 2" Tri-Clamp</td>
</tr>
<tr>
<td>Overall Length</td>
<td>Min U dimension 2"</td>
<td>Min U dimension 1"</td>
<td>Min U dimension 1"</td>
</tr>
<tr>
<td>Materials</td>
<td>Variety of metallic materials</td>
<td>Variety of metallic materials</td>
<td>304 & 316 Stainless Steel</td>
</tr>
</tbody>
</table>

Thermowells Continued

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Thermowell</th>
<th>Thermowell</th>
<th>Thermowell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Socket Weld</td>
<td>Weld-In</td>
<td>Van Stone</td>
</tr>
<tr>
<td>Process Connection</td>
<td>¼" & 1” Pipe Size</td>
<td>1.5" Pipe Size</td>
<td>1", 1.5” Pipe Size</td>
</tr>
<tr>
<td>Overall Length</td>
<td>Min U dimension 1”</td>
<td>Min U dimension 1”</td>
<td>Min U dimension 2”</td>
</tr>
<tr>
<td>Materials</td>
<td>Variety of metallic materials</td>
<td>Variety of metallic materials</td>
<td>Variety of metallic materials</td>
</tr>
</tbody>
</table>

See datasheets at ashcroft.com for complete product specifications.
Choose Ashcroft for Your Temperature Measurement Solutions

Equipped with state-of-the-art electronic document control and project management software, our knowledgeable and skilled global support specialists help with engineering, procurement, and construction (EPC) and large projects around the world by identifying and providing successful instrument solutions. We can help you choose the right multipoint solutions for your application.

Plant personnel in industries such as oil and gas, chemical and petrochemical need quality pressure and temperature measurements to keep their critical equipment and processes running. Understanding that your process can’t stop, Ashcroft designs and manufactures reliable instrumentation to meet the most challenging applications worldwide so you can confidently run your operation.

ashcroft.com

All specifications are subject to change without notice. All sales subject to standard terms and conditions. ©2022 Ashcroft Inc. Multipoint_br_RevB_08-04-22 WEB

ashcroft.com | 1.800.328.8258